AKTIVIERUNG AN C-3 DES 3-HYDROXYPHENOXAZON-(2)-SYSTEMS

Hj.Schlude und W.Schäfer
Max Planck Institut für Biochemie, München

(Received in Germany 25 July 1967)

Gemischte Anhydride des Typs I aus Carbonsäuren und Kohlensäuremonoäthylester werden bevorzugt an der Carbonylgruppe der Carbonsäure nucleophil substituiert 1,2,3. Ähnliche Verhältnisse fanden wir bei den Anhydriden des Kohlensäuremonoäthylesters mit den als vinyloge Carbonsäuren aufzufassenden 3-Hydroxyphenoxazonen-(2) (II R= OH)

Wir erhielten die 3-Äthoxycarbonyloxy-phenoxazone-(2) IIa - IId der Tabelle I durch Umsetzung der in absol.Benzol suspendierten 3-Hydroxy-phenoxazone-(2) mit Chlorameisensäureäthylester/Triäthylamin. Die Reaktion erfolgt bei Raumtemperatur, bei IIb unter Rückfluß. Beim Phenoxazon IId bleibt,im Gegensatz zur Reaktion mit Thionylchlorid, die Hydroxymethylgruppe an C-5 frei.

Die so aktivierten 3-Hydroxyphenoxazone-(2) liefern mit nucleophilen Agentien C-3 substituierte Phenoxazone (IIIa - IIIc der Tabelle I). Zur Reaktion sind bevorzugt schwach basische Nucleophile geeignet. Eine den Kohlensäureestern analoge Reaktivität gegen nucleophile Substitution zeigen die 3-Acetoxy-phenoxazone IVa - IVc, die wir durch Umsetzung der Hydroxy-phenoxazone mit Acetanhydrid/Pyridin erhielten.

TABELLE I.

	R	R "	R ^{III}	Fp A	usbeute %
IIa	сн ₃	Н	-осоос ₂ н ₅	177 ⁰	68
IIb	CH ₃	COCH ₃	-000002H5	189 ⁰	66
IIc	OCH ₃	Н	-0C00C ₂ H ₅	175 ⁰	71
IId	och ₃	сн ₂ он	-000002H5	170 ⁰	55
IIIa	сн ₃	COCH ₃	-NHC ₆ Н ₅	173 ⁰	57
IIIb	осн ₃	H	-N ₃	130°Ze r s	. 86
IIIc	CH ₃	COCH ₃	-sc ₆ H ₅	1910	44
IVa	сн ₃	н	-ососн ₃	188 ⁰	64
IVb	OCH ₃	H	-ococh ₃	162 ⁰	80
IVc	och ₃	CH ₂ OAc	-ососн ₃	160 ⁰	82

Aus dem Phenoxazon IIb entsteht mit Pyridinhydrochlorid in siedendem Methanol oder Äthanol das 2-Methoxy(äthoxy)-2-äthoxycarbonyloxy-4.5-diacetyl-2.3-dihydrophenoxazinon-(3) (V), dessen Konstitution durch Analyse und spektroskopische Daten gesichert ist:

Massenspektrum: MG 401 = C₂₀H₁₉NO₈; KMR-Spektrum (CDCl₃,Tetramethylsilan **5** = 0 ppm): OCH₃ 3.3 ppm, C-H an C-4 6.65 ppm s (1), Ar-H 7.0-1.8 ppm, NH 15.1 ppm, Austausch mit Deuteriumoxyd nach 8 Stdn. unvollständig. Die Konstitution V des Phenoxazinons weist auf den Nechanismus der nucleophilen Substitution an diesen vinylogen gemischten Anhydriden hin.

Herrn Professor Dr.A.Butenandt danken wir für die großzügige Förderung der Arbeit.

- 1) Z.J.Sharmova, T.V.Protapova und A.P.Skoldinov, Zh.Obshch.Khim 34, 3511 (1964); C.A. 62, 3931 (1965).
- 2) D.A.Johnson, <u>J.Amer.Chem.Soc</u>. <u>75</u>, 3636 (1953).
- 3) Th. Wieland und H. Bernhard, Liebigs Ann. Chem. 572, 190 (1951).